Greenland Ice Sheet flow response to runoff variability
نویسندگان
چکیده
منابع مشابه
Clouds enhance Greenland ice sheet meltwater runoff
The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data ...
متن کاملGreenland flow variability from ice-sheet-wide velocity mapping
Using RADARSAT synthetic aperture radar data, we have mapped the flow velocity over much of the Greenland ice sheet for the winters of 2000/01 and 2005/06. These maps provide a detailed view of the ice-sheet flow, including that of the hundreds of glaciers draining the interior. The focused patterns of flow at the coast suggest a strong influence of bedrock topography. Differences between our t...
متن کاملGreenland outlet glacier ice - flow variability
1 I ce mass loss from the Greenland Ice Sheet is a primary contributor to global sea level rise. The rate of ice loss has accelerated over the last couple of decades and Greenland currently contributes about 0.7-1.1 mm/yr to sea-level rise (260-380 Gt/ice per year; Enderlin et al. 2014; Shepherd et al. 2012). Predicting the potential rate and limits of future mass loss requires a clear understa...
متن کاملGreenland Ice Sheet Surface Air Temperature Variability: 1840–2007*
Meteorological station records and regional climate model output are combined to develop a continuous 168-yr (1840–2007) spatial reconstruction of monthly, seasonal, and annual mean Greenland ice sheet nearsurface air temperatures. Independent observations are used to assess and compensate for systematic errors in the model output. Uncertainty is quantified using residual nonsystematic error. S...
متن کاملGreenland ice sheet melt from MODIS and associated atmospheric variability
Daily June-July melt fraction variations over the Greenland ice sheet (GIS) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500 hPa height. Blocking activity with a range of time scales, from synoptic waves breaking poleward (<5 days) to full-fledged blocks (≥5 days), brings ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geophysical Research Letters
سال: 2016
ISSN: 0094-8276,1944-8007
DOI: 10.1002/2016gl070414